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During the motion of a partially ionized gas in magnetohydrodynamic channels the distribu-
tion of the electrical conductivity is usually inhomogeneous due to the cooling of the plasma
near the electrode walls, In Hall-type MHD generators with electrodes short-circuited in the
transverse cross section of the channel the development of inhomogeneities results in a de-
crease of the efficiency of the MHD converter [1]. A two-dimensional electric field develops
in the transverse section. Numerical computations of this effect for channels of rectangular
cross section have been done in [2, 3], At the same time it is advisable to construct analytic
solutions of model problems on the potential distribution in Hall channels, which would per-
mit a qualitative analysis of the effect of the inhomogeneous conductivity on local and inte-
gral characteristics of the generators, In the present work an exact solution of the trans-
verse two-dimensional problem is given for the case of a channel with elliptical cross sec~
tion stretched along the magnetic field. The parametric model of the distribution of the elec
trical conductivity of boundary layer type has been used for obtaining the solution. The de~
pendences of the electric field and the current and also of the integral electrical character-
istics of the generator on the inhomogeneity parameters are analyzed.

1. We consider some general relations for cylindrical Hall-type MHD channels with an arbitrary
shape of the cross section S, We shall assume that in the channel |x| < L, (y, z) €S there is a stationary
flow of an anisotropically conducting gas. We shall take the applied magnetic field to be homogeneous

B= — Be,, B = const >0

and the parameter of magnetohydrodynamic interaction and the magnetic Reynolds number to be small com-
pared to unity.

We also assume that the lateral surface of the channel is made up of a large number of thin closed
electrodes separated from each other by thin dielectric fillings [2], so that the boundary ' of an arbitrary
section x = const can be taken as equipotential, The external load is connected to the end sections of the
channel x =+ L,

It is assumed that the length of the channel is much larger than its characteristic transverse dimen-
sion, In this case the conductivity is assumed to be a known function of the transverse coordinates o =
o (y, z). The Hall parameter of the electrons g is taken to be constant and given, and the Hall parameter
of ions is assumed to be negligibly small.

A homogeneous profile is given for the velocity of the flow:

V = Ue,, U = const > 0.

In the presence of a turbulent boundary layer the real velocity profile will be exaggerated. In this
case the integral electrical characteristics of the generator operating with a weakly ionized plasma are
more sensitive fo sudden changes of the conductivity in the temperature boundary layer than to the inhomo-
geneities of the velocity field.
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Disregarding the effect of the end zones, we arrive at the problem of two-dimensional distributions
of the electric field E (y, z) and the current density j(y, z) with the subsequent computation of the integral
electrical characteristics of the generator. The system of equations to be used is of the form

rotE=0, divj=0 1.1)
j=c(E+VxB)—jxp, p=3B/B-

We introduce the electric potential x , such that E=— vy . Since the electric field is independent of
the coordinate, it has the form

@ ¥, 2)=Ejz+e(y, 2, Ej= —E,= const >0 -

The constant E|; occurs in the solution of the boundary value problem for the function ¢ asaparameter
and is later determined through the value of the external load from Ohm's law for a complete circuit, From
(1.1) we conclude that the function ¢ (y, z) satisfies the following elliptic equation:

i) 'a'ch dlnsog dlnsop dlns
5@?‘4—(1—!—32)51—2’1——3@—5—!—(1%-52) FP —67'“E* 3 (12)
E,=UB+BE; = const

For Eq. (1.2) in region S, itis necessaryto solve a Dirichlet problem with zero boundary conditions at
the contour
®lh=0- (1.3)

It is easy to see that the solution of the formulated problem has the form

oY, 2 = By (¥, 2)

wherein the function ¢(y, z) does not contain the quantity Ex. If the solution of the houndary value prob-
lem is known, then all the integral characteristics of the generator can be computed with its use,

Let us consider the relationship of the integral characteristics and the quantities characterizing the
distribution of the conductivity, field, and current in the transverse cross section of the channel, We in-
troduce the following quantity:

Op = <]y>/E* .

Here and below the angular brackets denote averaging of the function over the section §. In the case
o = const the quantity o¢ coincides with the effective conductivity [4]. Making use of the expression for
{ jy) obtained by averaging Ohm's law (1.1), we get
Se=(L+ B f)) (=B Ee=—om/on) . .4

The function f(y, z) does not contain E, as a parameter, In the case of homogeneous conductivity,
f = 0, since the boundary value problem (1.2), (1.3) for ¢ = const has only a trivial solution. It follows
from the boundary condition (1.3) that the electrical power generated by the transverse field E | = Eyey’ +
Egze, on the currents, when averaged over the cross section, is equal to zero

G =~ 85§ iiyeds = — 52 ([ divej)as = — s (gnj ar =0 - (1.5)

5, 8 1N

On the other hand, the computation of the quantity (j | E,) with the use of Ohm's law yields the ex-
pression

GLED =0+ IE + (L +B)ERD +<ofY By} -

From this equationand from (1.5) it follows that (o ¥y =< 0. Then from (1.4) we arrive at the inequal-
ity

o, << <o> /(1 + p?) - (1.6)

The equality in (1.6) is satisfied only for o = const,



Using Ohm's law again,we compute the mean density of the longitudinal current jx:
<7'x> = GeﬁUB -+ (320-8 - <G>)E’” °
In the idling mode we will have (jyx) = 0, and E attains its maximum (compared to the operating
modes of the generator) value E,,, where

Ep = 60366 (<G> - [320-8)—1 ) (1-7)

On connecting an external resistance R we will have E = kE,,. In the mode of electrical power gen-
eration for the load coefficient k, we obtain

O0<k=R/(R+nrn<1t-
Here r is the equivalent internal resistance of the generator. For a usable electrical power N, elec-

trical efficient n, Joule dissipation @, and r, we obtain the following equations:

N =2LS8<j.> By = 2LSU*BaBPs (1 — k), @ = By, /UB 1.9
n = oB% (1 — k) /(oB + 1), Q = 2LSU?B, (aB?k* - 1) a.
r=2LS" (o) — B,)

Here a = 1 is the shunting coefficient of Hall emf. The maximum value of 7 for variation over k is
attained at the following value of the load coefficient:

k= kp=op2(1+ apf?)s — 1]
and is equal to ny =1 — 2Kkyy.

It follows from equations (1,7), (1.8) and inequality (1,5) that for fixed values of L, S, U, B, 8, and k
in the presence of inhomogeneous distribution of the conductivity, N, n, Q, Ey,, and r decrease in compari-
son with their values for ¢ = (o) =const,

Thus, in order to determine the integral characteristics of the generator, it is necessary to know the
value of ¢, which can be calculated only from the known solution of the boundary value problem.

2. We now pass on to dimensionless variables
Ye=V1EtBy/a, zu=z/a, ¢u=VI+P0o/E @.1)

in Eq. (1.2).

Here a is the characteristic transverse dimension of the channel. In the deformed plane y_z, the
function ¢ 4 is described by an equation with isotropic differential operator

ach*+0zq>* _9lnc dg, dlnsdp, dlns 2 .2)
dyz, T 0z, 1 Yy Yy Bz 0% OYp .

In the plane y,z, we introduce the polar coordinates

p=Vyl+ 2’ tand=y,/z . 2.3)

A quite simple solution of the Dirichlet problem for Eq. (2.2) can be constructed if under transforma-
tion (2.1) region S goes over into a circle of unit radius and the electrical conductivity depends only on p .
In this case the transverse cross section of the MHD channel is an ellipse, whose major semiaxis a is
directed along the vector B and the minor semiaxis is equal to a/v1 + 32. The lines ¢ = const form a
family of ellipses similar to the boundary contour I".

With these assumptions, Eq. (2.2), written in variables (p, 8), becomes

P, ) : .
T A (14 Hg)ime | Lo 4 gy, @.4)
We shall seek the solution of the homogeneous Dirichlet problem for Eq. (2 .4) in the form

¢y = D (o) sin 6 O<p<t 0O 2m) .



For the function @ (p) we have the following boundary value problem;

@ +pl(t+dlno/dlnp)®'— @ =ptdlnc/dlnp (2.5)
D) — O (1) = 0- '

The vanishing boundary condition for ® at p = 0 follows from the requirement of continuity of the
potential at the coordinate origin. In the case of an arbitrary dependence ¢ (p) the solution of problem
(2.5) cannot be written in terms of tabulated functions. The solution can be obtained in the final form if,
for example, the dependence dlng/ dln p is approximated by a piecewise constant function, Let us con-
sider the following model law of variation of the conductivity:

6=o0o=const O<p<Tpy), 0=0,(ps /P (x<OKD. (2.6)

The quantity p, defines the dimensionless radius of the zone of homogeneous conductivity. For
% > 0 the dependence in 2.6) simulates the law of decrease of the electrical conductivity in the boundary
layer. Below we shall take » > 0, although the solution obtained below can be investigated also for nega-
tive values of ».

Using the dependence (2.6),we obtain the boundary value problem for the equation with discontinuous
coefficients

Q" + o' 1 —xH (p — p)I®" — p2D = — xp™'H (p — py)
DO0)= DdD)=0 -

Here H(p — p «) is the Heaviside unit function. The general solution of Eq. (2.7) contains two arbi-
trary constants in the region 0 < p < p, and two in the region px < p < 1. For p = p 4« the conditions of
equality of the functions ®(p) and ®'(p) are imposed, which follow from physical conditions of continuity of
the potential and the normal component of the current at the boundary of the homogeneous zone. These re-
quirements, together with the boundary conditions, determined the unique continuously differentiable solu-
tion of the problem (2.7), which has the form

2.7

D)= =G —h)ps P O<p<ps)
D) =p—G[(1 —d) (p/pe™+ Qs — (0 /pe)™]  x<p<Y 2 .8)

;
Mo = £} 14 T, 6= (o= Dpa+ (L~ D)o

The second derivative &" is discontinuous at p = p 4, which corresponds to the discontinuity of the
space charge density and is related to the choice of the distribution of the conductivity (2.6), which is not
smoothat p =p .

For the components of the vectors E and j we obtain the following equations:

Ex = — E" = const
E, = — E; (7' @ cos?0 -+ D’ sin2)
E,= (14 B2y Ey(p™* @ — ®')sin O cos 6

je= —Ey 0(p) + ( + P PE4o (p) (1 — p™* ® cosd — D "sin20) 2.9)

Jy= (1 + P2 LE.o (p)(1 — p7'Dcos20 — D’ 5in26)
o= (1 + ) :Eu0 (p) (p71@ — D) sin O cos 6

i

We note that equation (2.9) remains valid even in the case of arbitrary dependence o (p). The function
& (p) must be a solution of the problem (2.5) corresponding to the chosen function ¢ (p).

3. We now turn to the analysis of the obtained solution. The function &(p) has a single extremum at
the point p = p,, which is determined from the solution of the transcendental equation

(A — 1) - (1 —Ag) oyt ™ = (M - 1) BT — (R + 1) EML
» (E=00/0x) .

In the interval 0 < p < p %, ®(p) is linear; therefore, we always have p, > py, i.e., the points of ex-
tremum of the potential ¢ ,(p,0) lie in the region of the boundary layer. A similar result was obtained in
the numerical computations in [2, 3]. A direct calculation shows that 82/ 8p* < 0; therefore, with the de-
crease of the thickness of the boundary layer the extremums shift toward the boundary of the homogeneous
zone p = px. For a fixed value of p « the quantity p, increases with the parameter » > 0.
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It is not difficult to verify that in its main body $'(p) is positive. Hence the value p = py is the point
of maximum of the function ®(p), Thus,at p = Pg, 0 = 1/27r a maximum occurs, while at p = p;, § = 3/971’ we
geta minimum of the nondimensional potential ¢ « = ¢ (p)sin@.

An increase of the thickness of the boundary layer leads to a growth of the function ®(p). For a con-
stant radius of the homogeneous zone p x and for large values of » we obtain the asymptotic equations

—1
Ox(1- o <o (3.1)
Dap - E=lECIR oy
%—1 4 py

Equations (3.1) show that for w —= the limiting distribution of &(p) is discontinuous:

lim®e)=p (O<p<1), lim D(1)=0 -
This behavior of ¢(p) is caused by the fact that for » — « the quantity ¢ in the boundary layer tends
to zero. As aresult,in any region p < 1 — ¢ away from the wall the current density tends to zero and the
vector E tends to the induced field E § = —V x B, whose potential at the wall is nonzero,

The level lines of the dimensionless potential ¢, in the first and fourth quadrants of the dimensionless
physical plane y /a , z/a are shown in Fig. 1 for 8 =1, ps =0.5, and for » =4 and 8,

The component Ey of the electric field is alternating; in the homogeneous zone, Ey < 0. The equation
of the line 1, on which Ey vanishes, has the following form in the coordinates (p, 6):

cotan® 8 =—p®'/® . (3.2)

This last equation has a real solution 67 (p) in the region p, = p = 1, where Py is a maximum of ¢(p).
In the deformed plane yxzy the line ! represents a closed curve symmetric with respect to the coordinate
axes tangent to the circle p =1 at 6 = 0 and 7 and to the circle p = p, for § = %1 and %n. The maxi-
mum value of Ey along the coordinates is obtained at the boundary contour at the points (p =1, 6 = 1/?7r) and

(p =1, 6 =%m).



7 The component E, of the field is equal to zero in the homogene-
o/ ous zone. In the boundary layer,E, is positive in the first and the
third quadrants and negative in the second and fourth. The maximum
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\ and minimum values of E, are attained at the boundary p =1 on the

|

25 N M rays 0 = Y,w, %=, and %n, ¥ m, respectively,
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The component j,, of the current density is everywhere positive
AN d ties in the followiry
A0 and lies in the following ranges:
1 \ . .
7 z 4 g # 1) <iy o, 6) <Jale) (3.3)
Fig. 3 1) = (1 + P32 Eyo (1 — p72®), 1, (p) = (1 + 9! Eyo (1—0) ’

The component jy is constant in the core and falls off with the

increase of p in the boundary layer., The maximum of jy is attained

at the points of the contour I' for # = 1/211 , %Tr and is equal to j,(1), At these points the retarding Lorentz

force is maximum, and they are the most hazardous in possible rupture of the viscous boundary layer [5].
With the increase of the parameter w or with a decrease of p, the component iy decreases,

The qualitative characteristics of the behavior of the current component j, depend on the values of «.
In the core, j, = 0, while in the boundary layer, |j, | increases monotonically with the increase of p in the
range 0 < ®= Ry, For w > », the maximum of ljZ\ along p appears at p = p,. The values of n, are the
roots of the transcendental equation

1 + M (MO) :‘1f[7»1(”-c)~7~2(10)] _
[ 1 -4 2 (%0) =

For p.. we have the following equation:

By =Py (L A0/ (1 + AVO2

The maximum of j; in the first quadrant of region S is attained at the boundary at the point (p =1,
0 = 1/47r), if 0 < % < ny, and inside the region at the point (p = p,, 6 = 1/47r), if ® > ny,. For n — = the
absolute maximum of j, gets shifted to the boundary of the homogeneous zone,

A computation of o ¢ corresponding to the obtained solution yields the following equation:

S0 (M 1)pet— (et 1) p™

I T T T e 34
For the integral-mean conductivity corresponding to the distribution (2.6), we obtain
- 2 2 * 2 (3.5)
(@) =004 + 5o (04* —04Y)| D) -

(0) =0404* (1 — 2Inp,) (=2 .

For n — < , 0, tends to zero, while (o) tends to a finite limit Gop*’, The dependences of (¢} /0,
and (1 + 32)%/ o, on the power exponent » in the law of decrease of the conductivity (2.6) are shown in
Fig.2. The dimensionless radius of the homogeneous zone p, serves as a parameter of this family of
curves,

The replacement of 0g by the quantity (o) / (1 + #?) in the computation of the integral character—
istics of the generator leads to appreciable errors at sufficiently large values of » or sufficiently small
values of p,. The dependences of the ratio N/ 7m" on the exponent » are shown in Fig. 3 for g =2.
Here nm is the maximum possible electrical efficiency of the generator computed from the two-dimension-
al theory, and ny,? is the maximum efficiency computed under the assumption o = (o ) = const. The
parameter of the family of curves is p .

Let us now investigate briefly the distribution of that part of the local electric power, which is due
to the components of the vector E in the plane of the transverse cross section of the channel. For the

quantity n =j ,E , , we obtain the expression

7 (p, 8) = (1 4 B2 E,20 (p)[p~1® (51D — 1) cos? 8 4 D’ (O —1) sin26} . (3.6)



The function n(p, 0) is alternating, since it does not give any contribution to the integral power [see
Eq. (1.5)]. The condition n = 0 determines the line along which the coordinates p and 6 are connected by
the relation

cotan’g, = — @’ (®" — 1) / [p @ (p" D — 1)] - (3.7)

A real solution 0.},(/3) of Eq. (3.7) exists in the region p, = p =1. The line y is symmetric with re-
spect to the coordinate axes and is a closed curve tangent to the circle p =1 at § = 0,7, and to the circle
p =pyat 8 = 1/277, 3/2 7., Compared to the line I on which Ey =0, curvey lies closer to the homogeneous
zone: on I, n= oE,’ = 0,

In view of the fact that the transverse current j | is closed through the electrode wall, the range of
positive values of n performs the function of a load in the circuit of the transverse current. The centiral
region bounded by the contour y plays the role of current source in this circuit,

The generalization of the solution given above to the case of a generator with a frame-~type channel,
when the transverse section has the previous elliptical shape and the closed electrode frames are inclined
to the axis of the channel at an angle 6, does not present any essential difficulties. For this case also the
solution is constructed by the method of separation of variables, wherein for the function ¢(p) Eq. (2.5)
must be solved with the boundary conditions:

D(0) = 0,d (1) = — (Ey / E,) cotan 0,

The solution obtained above can be used for the improvement of the hydraulic model describing
quasi-one-dimensional flow in profiled Hall channels with appropriate geometry of the transverse cross
section. Models of this type are usually used in engineering computations of MHD devices [5].
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